Guessing models and forcing axioms

Šárka Stejskalová (joint work with Chris Lambie-Hanson)

Institute of Mathematics, Czech Academy of Sciences Department of Logic, Charles University

logika.ff.cuni.cz/sarka

January 29, 2022

- Let $\theta \geq \omega_2$ be a regular cardinal and let $M \prec H(\theta)$ have size ω_1 .
 - (1) Given a set $x \in M$, and a subset $d \subseteq x$, we say that
 - d is M-approximated if, for every z ∈ M ∩ 𝒫_{ω1}(M), we have d ∩ z ∈ M;
 - 2) d is M-guessed if there is $e \in M$ such that $d \cap M = e \cap M$.
 - 2 *M* is a guessing model for x if every *M*-approximated subset of x is *M*-guessed.
 - 3 *M* is a *guessing model* if *M* is guessing for every $x \in M$.

Intuitively, being a guessing model says that M is similar to the "outer universe" $H(\theta)$, if we restrict our attention to countable sets. For instance a subset d of ω_1 will be in M provided that all its countable initial segments are elements of M, or equivalently, $d \subseteq \omega_1$ will not be an element of M only if for some $\alpha < \omega_1$, $d \cap \alpha$ is not in M.

Note. Recall what it means that some (generic) extension of V satisfies the ω_1 -approximation property. Using this concept, M is a guessing model iff the transitive collapse of M satisfies the ω_1 -approximation property with respect to $H(\theta)$.

Definition We denote by $GMP(\theta)$ the assertion that the set $\{M \in \mathscr{P}_{\omega_2}(H(\theta)) \mid M \text{ is a guessing model}\}$ is stationary in $\mathscr{P}_{\omega_2}(H(\theta))$. We write GMP if $GMP(\theta)$ holds for every regular $\theta \ge \omega_2$.

- (Viale and Weiss) In the generic extension by Mitchell forcing up to a supercompact cardinal, GMP holds.
- In the generic extension by Mitchell forcing up to a weakly compact cardinal, GMP(ω₂) holds.
- (Viale and Weiss) PFA implies GMP.
- GMP implies $2^{\omega} > \omega_1$
- (Lambie-Hanson, S.) GMP implies $2^{\omega_1} = 2^{\omega}$ if $cf(2^{\omega}) \neq \omega_1$, otherwise $2^{\omega_1} = (2^{\omega})^+$.
- (Krueger) GMP implies SCH.
- (Lambie-Hanson, S.) GMP implies SSH.
- (Cox and Krueger) GMP(ω_3) implies $\neg AP(\omega_2)$ and $TP(\omega_2)$.

Recall the following definition:

Definition Let κ be a cardinal. We say that a κ -tree T is a κ -Kurepa tree if it has at least κ^+ -many cofinal branches; if we drop the restriction on T being a κ -tree, and require only that T has size and height κ , we obtain a weak Kurepa tree. We say that the Kurepa Hypothesis, KH(κ), holds if there exists a Kurepa tree on κ ; analogously the weak Kurepa Hypothesis, wKH(κ), says that there exists a weak Kurepa tree on κ . Some basic properties:

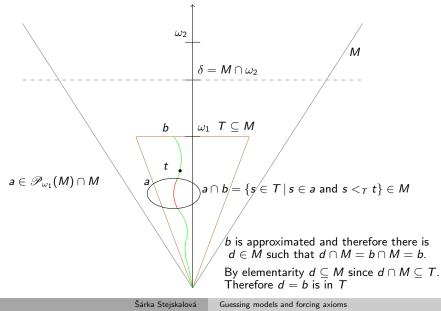
- If CH holds, then $2^{<\omega_1}$ is a weak Kurepa tree.
- Therefore $\neg \mathsf{wKH}(\omega_1)$ implies $2^{\omega} > \omega_1$.
- (Mitchell) In the generic extension by Mitchell forcing up to an inaccessible cardinal ¬wKH(ω₁) holds.
- (Silver) The inaccessible cardinal is necessary. If $\neg wKH(\omega_1)$ holds, then ω_2 is inaccessible in *L*.

Assume $\neg \mathsf{wKH}(\omega_1)$ holds:

- (Baumgartner) If $2^{\omega} = \omega_2$, then $2^{\omega_1} = \omega_2$; in fact, even $\Diamond^+(\omega_2 \cap \operatorname{cof}(\omega_1))$ holds.
- Baumgartner's result can be generalized as follows: if $2^{\omega} < \aleph_{\omega_1}$, then $2^{\omega_1} = 2^{\omega}$.
- (Cox and Krueger) GMP(ω₂) implies ¬wKH(ω₁). We wil sketch a proof of the result of Cox and Krueger to illustrate the use of guessing models.

$GMP(\omega_2)$ implies $\neg wKH(\omega_1)$

 $M \prec H(\omega_2)$ is a guessing model such that $T \in M$, $|M| = \omega_1$ and $\omega_1 \subseteq M$



Let $\theta \geq \omega_2$ be a regular cardinal. $M \in \mathscr{P}_{\omega_2}H(\theta)$ is said to be an *indestructible* ω_1 -guessing model if it is an ω_1 -guessing model and remains an ω_1 -guessing model in any forcing extension that preserves ω_1 . IGMP(θ) is the assertion that there are stationarily many indestructible guessing models in $\mathscr{P}_{\omega_2}H(\theta)$. IGMP is the assertion that IGMP(θ) holds for all regular $\theta \geq \omega_2$.

- (Cox and Krueger) PFA implies IGMP; in particular IGMP follows from the conjunction of GMP and the assertion that all trees of height and size ω_1 are special.
- (Cox and Krueger) IGMP is compatible with any possible value of the continuum with cofinality at least ω_2 .
- (Cox and Krueger) IGMP implies SH.

- Ox and Krueger ask whether IGMP implies that the pseudointersection number p is greater than ω₁.
- 2 Cox and Krueger ask whether IGMP implies that every tree of height and size ω_1 with no cofinal branches is special.
- 3 Krueger asks whether $PFA(T^*)$ implies $\neg wKH$.

• To answer these question we work with forcing axioms for Suslin and almost Suslin trees.

Suppose that T is an ω_1 -tree, i.e., a tree of height ω_1 , all of whose levels are countable.

- ① T is an Aronszajn tree if it has no cofinal branches.
- 2 T is a Suslin tree if it is an Aronszajn tree and has no uncountable antichains.
- ③ T is an almost Suslin tree if it has no stationary antichains, i.e., no antichains A ⊆ T for which the set {ht(s) | s ∈ A} is stationary in ω₁, where ht(s) denotes the level of s in T.

Let S denote a Suslin tree and T^* an almost Suslin Aronszajn tree.

Definition

Let \mathbb{P} be a forcing notion.

① For a Suslin tree *S*, we say that \mathbb{P} is *S*-preserving if $\Vdash_{\mathbb{P}}$ "*S* is a Suslin tree".

② For an almost Suslin Aronszajn tree T*, we say that P is T*-preserving if ⊩_P "T* is an almost Suslin Aronszajn tree".

If C is a class of forcing posets, then FA(C) is the assertion that, for every $\mathbb{P} \in C$ and every collection $\mathcal{D} = \{D_{\alpha} \mid \alpha < \omega_1\}$ of ω_1 -many dense subsets of \mathbb{P} , there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \omega_1$.

- MA_{\u03c611}(S) is the assertion that S is a Suslin tree and FA(C) holds, where C is the class of c.c.c. S-preserving posets.
- PFA(S) is the assertion that S is a Suslin tree and FA(C) holds, where C is the class of proper S-preserving posets.
- ③ PFA(T*) is the assertion that T* is an almost Suslin Aronszajn tree and FA(C) holds, where C is the class of proper T*-preserving poset.

If we start with a model satisfying PFA(S) and then force with the Suslin tree *S*, then we say that the resulting forcing extension satisfies PFA(S)[S]. Asserting that PFA(S)[S] implies a statement φ should be understood as asserting that, in any model of ZFC satisfying PFA(S) for some Suslin tree *S*, we have $\Vdash_S \varphi$. MA_{ω_1}(S)[S] is defined analogously, with MA_{ω_1}(S) replacing PFA(S).

- PFA(S) implies $\mathfrak{p} > \omega_1$, PFA(S)[S] implies $\mathfrak{p} = \omega_1$.
- (Todorcevic) PFA(S) implies that there is a Suslin tree, PFA(S)[S] implies that all ω_1 -trees are special.
- (Krueger) PFA(T*) implies that there is a nonspecial ω₁-Aronszajn tree, but every ω₁-Aronszajn tree is special on cofinally many levels, in particular PFA(T*) implies SH.

- (Lambie-Hanson, S.) PFA(S)[S] implies IGMP. This answers question (1) of Cox and Krueger negatively since, in any model of PFA(S)[S], we have p = ω₁.
- (Lambie-Hanson, S.) PFA(S) implies GMP.
- (Lambie-Hanson, S.) PFA(T*) implies IGMP. This shows that IGMP does not imply that every tree of height and size ω₁ with no cofinal branches is special, which answers negatively question (2) of Cox and Krueger. In any model of PFA(T*), IGMP holds and T* is a nonspecial Aronszajn tree.
- (Lambie-Hanson, S.) PFA(T*) implies ¬wKH, since IGMP implies ¬wKH. This answers question (3) of Krueger positively.

Cox and Krueger proved that IGMP is compatible with any possible value of the continuum with cofinality at least ω_2 .

Is IGMP compatible with cf(2^ω) = ω₁? What about just IGMP(ω₂)?

Motivated by this question we proved only that the "indestructible version" of $\neg wKH$ is compatible with any possible value of the continuum, including values of cofinality ω_1 .